HENRY FORD HEALTH

Antimicrobial Stewardship Strategies Targeting Transitions of Care

Nisha Patel, Pharm.D., BCPS

Clinical Pharmacist - Internal Medicine

Henry Ford Health - Detroit

November 3, 2023

Learning Objectives

At the end of this presentation, participants will be able to:

- 1. Identify opportunities to improve antimicrobial stewardship (AMS) efforts targeting care transitions.
- 2. Evaluate evidence to support reducing antibiotic prescribing for asymptomatic bacteriuria.
- 3. Discuss strategies to improve antibiotic prescribing at hospital discharge.

The speaker has no conflicts of interest to disclose in relation to this presentation

Antimicrobial over use is RAMPANT

55% of all patients in hospitals receive an antibiotic

Estimated 1/3 are not necessary

Antibiotics are prescribed...

39% of urgent care visits

36% of retail clinic visits

13% of ED visits

7% of medical office visits

% for VIRAL respiratory infections

16% urgent care visits

17% retail clinic visits

5% ED visits

6% medical office visits

Antibiotic Stewardship Core Elements

Hospital Leadership Commitment Accountability Pharmacy Expertise Action Tracking Reporting Education

Antimicrobial Stewardship Programs (ASP)

System to improve antibiotic use, comprised of multidisciplinary personnel, information technology, diagnostics, interventions, tracking, reporting, and education

Mission

Improve patient outcomes through optimization of antimicrobial therapy and to support the education of healthcare providers in appropriate antimicrobial use

Goals

Improve patient outcomes

Improve patient safety

Reduce antibiotic overuse

Cost Effective Care

Every Day Matters

 9% increased risk of *C. difficile* per day in patients receiving antibiotics for pneumonia

 4% increased risk of P. aeruginosa resistance to meropenem, pip/tazo, or cefepime for each day of therapy

 Every 10 days of antibiotics is associated with a 3% increased risk of serious ADE

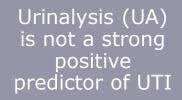
Patient Case AB

AB is a 79-year-old male with uncontrolled type 2 diabetes on insulin, recurrent diabetic foot infections, and peripheral artery disease on rivaroxaban and aspirin, who presents to the ED by his family due to seeming more confused and tired than his baseline. He has no other symptoms. His labs and vitals are obtained and listed below.

VITALS	
ВР	112/66 mmHg
HR	66 bpm
Temperature	98.6°

PERTINENT LABS		
WBC	9.7 K/μL	
Hgb	13.5 g/dL	
Na	137 mmol/L	
SCr	0.9 mg/dL	
BGL	46 mg/dL	

URINALYSIS	
Leukocyte Esterase	Large
Nitrite	Positive
WBC	78 cells/mL
Squamous epithelial cells	2-3
Bacteria	Rare


Patient Case AB Treatment

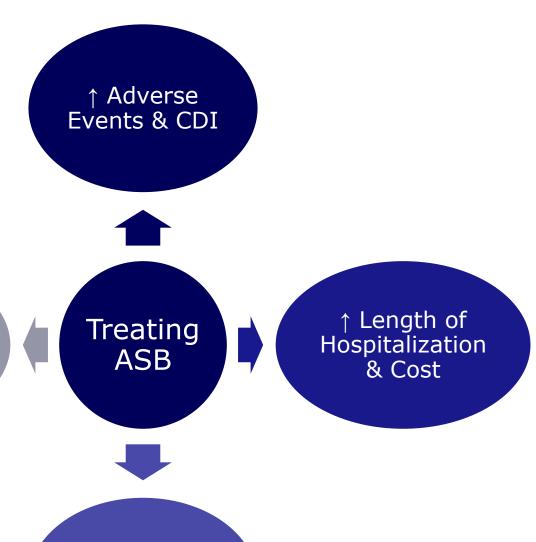
The ED medical resident calls you and asks what treatment they should start for a suspected UTI. What would your recommendation be for AB?

- A. Ceftriaxone IV for a urinary tract infection
- B. Vancomycin and cefepime for possible sepsis
- C. Hold antibiotics and consider Andexxa alfa for a possible bleed
- D. Hold antibiotics and IV dextrose for hypoglycemia

What is Asymptomatic Bacteriuria (ASB)?

Bacteria in urine without urinary symptoms

Common finding in some healthy women & those w/ GU tract abnormalities



Most ASB is not infectious and does not require treatment with antibiotics

Harms of Treating ASB with Antibiotics

Does Not
Improve
Patient
Outcomes
(except certain
populations)

HENRY FORD HEALTH

Vaughn VM, et al. JAMA Intern Med. 2023;183(9):933-941.
Nicolle LE, et al. *Clin Infect Dis.* 2019;68(10):e83-e110.
Petty LA, et al. JAMA Intern Med. 2019;179(11):1519-1527.

10

Antimicrobial Overuse for ASB in the Emergency Department (ED)

43 hospitals in the Michigan Hospital Medicine Safety Consortium (HMS)

N = 2,461 patients in ED w/ ASB, 74.4% received antibiotics

UC ordered in 80% of patients (most common reason: abnormal UA; others: AMS, spinal cord injury, dementia, urinary catheter) & initiated tx in 68.5% (n=1253)

Once initiated, 79% remained on antibiotics for ≥ 3 days. Most common discharge antibiotic = ciprofloxacin

Antibiotic treatment →

- Longer length of stay (5.1 vs 4.2 days; relative risk = 1.16; 95% CI, 1.08–1.23)
- CDI more common: 0.9% vs 0%; P = .02

Strategies to Reduce Treatment for ASB

Antibiotic Stewardship Strategies

Education

• Education of symptoms, ASB treatment, & an algorithm in the ED: ↓ in patients treated for ASB: 39.6% vs. 23.1% (p=0.004) post intervention in a study by James, et al.

Audit and Feedback

Optimization of the Electronic Health Record

Antibiotic Restriction (i.e. fluoroquinolone)

Updated Institutional Treatment Guidelines

Strategies to Reduce Treatment for ASB

Diagnostic Stewardship Strategies

Audit and Feedback

Education

Remove/Change urine culture testing from order sets (ED, pre-surgical, admission)

Hide/Change urine culture result reporting

- Hiding positive urine culture results from clinicians reduced antibiotic initiation for ASB from 48% to 12% (P=0.002) in a study by Leis, et al.
- Urine culture report including a laboratory nudge discouraging treatment of ASB improved optimal treatment from 29 of 55 (52.7%) vs. 44 of 55 (80.0%) (P=0.002), by Daley et al.

Add/Remove reflex testing

Optimization of Electronic Health Record

Strategies to Reduce Treatment for ASB

Multi-faceted Approach

Cash MC, et al.

Antimicrob

Steward Healthc

Epidemiol. 2022

- **Intervention**: Verbal presentation to physicians and pharmacists, pocket card and treatment algorithm creation and distribution, alerts embedded into the EHR when ordering urine cultures, and elimination of reflex urine culture order
- **Results**: Significant reduction in inappropriate prescribing for ASB (100% vs. 32.4% vs. 28%, p<0.001)

MacLaggan TD, et al. *Infect Control Hosp Epidemiol.* 2019

- Intervention: Nursing and prescriber education, modification of positive urine culture reporting, pharmacist-led prospective auditand-feedback
- **Results**: 50.8% reduction in ASB treatment (67.3% vs. 16.5%)

Back to Patient Case AB

Question 2: AB is given IV dextrose, started on IV ceftriaxone for urinary tract infection, and admitted to the floor. What is a possible consequence of starting IV ceftriaxone in the ED?

- A. AB will develop Clostridium difficile.
- B. AB will be discharged with a 10-14 day course of antibiotics.
- C. AB will develop resistance to ceftriaxone.
- D. All of the above.

Uncomplicated Urinary Tract Infections: Short Course Beta-Lactams

Open-label, multicenter, RCT evaluating antibiotic duration for the treatment of uncomplicated UTI (uUTI) in women

3 days of cefpodoxime 100 mg PO BID (n=63)

3 days of TMP/SMX 1 DS PO BID (n=70)

Results: 3-day course of cefpodoxime is as safe and effective as a 3- day course of TMP/SMX for the treatment of uUTI in women

Uncomplicated Urinary Tract Infections: Three Days of Ceftriaxone

Retrospective cohort study evaluating antibiotic duration for the treatment of uncomplicated UTI (uUTI) in both men and women

3 days of ceftriaxone (n=51) Longer duration of therapy, median 6 days (n=49)

Results: 3-day course of ceftriaxone is as safe and effective as a longer duration for the treatment of uUTI

Urinary Tract Infections in Males: Duration of Therapy

Retrospective cohort evaluating the correlation between duration of antibiotic therapy and UTI recurrence in males

457 males without complicating factors:

- 50.9% prescribed ≤ 7 days
- 49.1% prescribed >7 days

No difference in UTI recurrence in males treated for ≤7 days vs. >7 days

Urinary Tract Infections in Males: Duration of Therapy

Randomized, double-blind, placebo-controlled noninferiority trial

Compared 7 days of TMP/SMX or ciprofloxacin to 14 days for treatment of UTI in afebrile men

Primary endpoint: symptom resolution 14 days after completing active therapy

7 days noninferior to 14 days for uncomplicated UTI in males

But are All Men Really... Complicated?

Old Definitions: 2011 IDSA Guidelines

Uncomplicated UTI:

 Acute cystitis in a healthy nonpregnant afebrile woman w/ no diabetes or urologic abnormalities

Acute Pyelonephritis

Complicated UTI:

Everything else

New Definitions:

2023 IDSA Guidelines Being Updated

Complicated UTI: infection beyond the bladder

- Pyelonephritis
- CAUTI
- Febrile or bacteremic UTI

Uncomplicated UTI:

• Everything else (women or men)

New Definition of cUTI: Empiric Therapy

Step 1

Severity of Illness (sepsis or no sepsis)

No sepsis: 3rd/4th gen. cephalosporin, pip-tazo, FQ

Step 2

Evaluate Risk factors for resistant organisms

UC and BC over last 12 hours Exposure to FQs prior 12 months

Step 3

Assess patient factors

i.e. allergies, route

New Definition of cUTI: Duration of Therapy

Consider **7 days of therapy** for patients with pyelonephritis, gram negative bacteremia 2/2 UTI with prompt clinical response, complicated UTI for women (all) and men without prostatitis

HENRY FORD HEALTH

Back to Patient Case AB

Question 3: AB improves after a day on the floor and the primary team is adamant about discharging him with antibiotics to finish the course for a UTI. What would be your recommendation for an optimal total duration of therapy?

- A. 3 days of cefpodoxime for an complicated UTI
- B. 3-5 days of sulfamethoxazole-trimethoprim for an uncomplicated UTI
- C. 10-14 days of cefpodoxime for a complicated UTI
- D. 7 days of ciprofloxacin for a complicated UTI

Antibiotic Overuse at Hospital Discharge

- Less than 1 in 5 hospitals with antimicrobial stewardship programs monitor antibiotic use after discharge
- In a study of 21,825 patients treated for infection:

49.1%Antibiotic overuse after discharge

63.1%Overuse in pneumonia due to excess antibiotic duration

34.2%Prescribed fluoroquinolones at discharge

Strategies to Target Prescribing at Hospital Discharge

Purpose

Evaluated a pharmacist-driven intervention to improve selection and duration of oral antibiotics at discharge

Primary Outcome

Frequency of optimized antimicrobial prescription

Method

Non-randomized stepped wedge design 9/1/2018 – 8/21/2019

Population

Adults with uncomplicated infections

┿

Prescribed antibiotics at discharge

Intervention

Pharmacist direct
engagement in
antimicrobial stewardship
program transitions of
care process

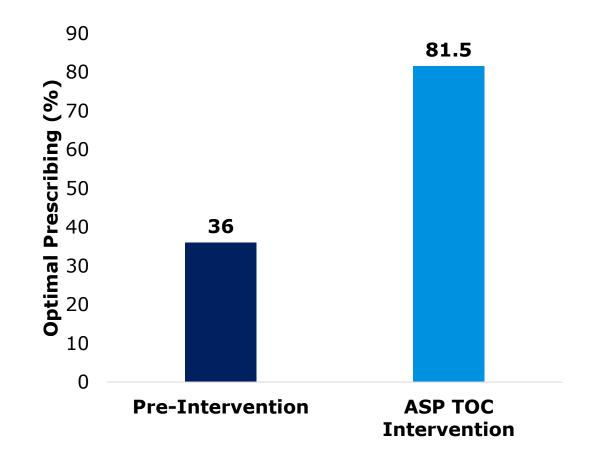
(ASP TOC)

Antimicrobial Stewardship Program Transition of Care (ASP TOC)

ASP TOC Intervention Steps		
Who?	 Academic Model: all pharmacists practicing on general medical wards Community Model: AMS Pharmacist leads intervention 	
Identify Patients	 EHR column of anticipated discharge, discussion during teaching rounds and/or progressive rounds 	
Communicate & Collaborate	 Pharmacist discusses plan during rounds or calls/messages provider 	
Order & Document	3 71 7	
	 Pharmacist writes ASP TOC EHR progress note 	

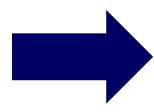
EHR: electronic health record

Key Steps in Intervention Implementation

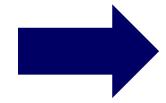

- Stakeholder Discussion
- Workflow Plan for Pharmacists
- Institutional Guideline Support for Pharmacists
- Educational Overview for Physicians, Nurses
- Electronic Templates for Documentation
- Metrics for Success

	Disease state	Regimen and dosage	Total Duration
atory tions	Community-acquired pneumonia (without microbiologic data)	 Amox/clav 1000/62.5 mg 2 tabs BID + azithro 500 mg daily or doxy 100 mg BID Amoxicillin 1000 mg TID + azithro 500 mg daily or doxy 100 mg BID Cefpodoxime 400 mg BID + azithro 500 mg daily or doxy 100 mg BID Beta-lactam allergy: Moxifloxacin 400 mg or levofloxacin 750 mg daily 	5 days (prompt clinical response) 7 days (structural lung disease or delayed response)
Respirato Infection	Acute Exacerbation of COPD (AECOPD)	 Doxycycline 100 mg BID (preferred) Azithromycin 500 mg or 250 mg 	5 days
	Hospital acquired pneumonia (without microbiological data)	Moxifloxacin 400 mg OR levofloxacin 750 mg daily	7 days without clinical response: tailor therapy to microbiologic data
rinary Tract Infections	Uncomplicated UTI/cystitis (align with organism susceptibility)	 Nitrofurantoin (NFT) 100 mg BID Sulfamethoxazole-trimethoprim (SMT) 1 DS tab BID Beta-lactam (targeted to organism) Fosfomycin 3 gm oral sachet (if ESBL history) 	NFT: 5 days SMT: 3 days BL: 3-7 days Fosfomycin: 1-2 doses
	Complicated UTI/ pyelonephritis (align with organism susceptibility)	 SMT 1-2 DS tab BID Ciprofloxacin 500 mg BID Beta-lactam (targeted to organism) 	SMT: 7 days Fluoroquinolones: 7 days BL: 7 days
	Asymptomatic bacteriuria	Do not treat unless pregnant or urologic procedure	0 days
SSTI	Non-purulent cellulitis	 Cephalexin 500 mg QID, cefuroxime 500 mg BID Dicloxacillin 500 mg QID Severe BL allergy: Clindamycin 300-450 mg TID 	5 days with prompt clinical response
S	Purulent cellulitis/ cutaneous abscess	Doxycycline 100 mg BIDSMT 1-2 DS BID	5 days with prompt clinical response
IAI	Spontaneous bacterial peritonitis	Moxifloxacin 400 mg daily or levofloxacin 750 mg daily	5 days
	Complicated, community acquired intra-abdominal infection with source control	 Moxifloxacin 400 mg daily Ciprofloxacin 500 mg BID + metronidazole 500 mg BID/TID Cefuroxime 500 mg BID + metronidazole 500 mg BID/TID Amoxicillin/clavulanate 875/125 mg BID 	4-7 days after source control

ASP TOC Outcomes: Improved Discharge Prescribing


Result

↑ Optimal antibiotic prescribing at discharge from 36% to 81.5%


Overall Results

Pharmacists collaborating and pending the discharge order increased appropriate discharge antibiotic regimens by 46%

Reduces antibiotic harm

Improves patient outcomes

Limitations of Completing the ASP TOC Intervention Identified

Inconsistent methods in identifying patients eligible for interventions

Weekend or "off-hours" staffing

Inaccurate "anticipated discharge dates" on EHR

Addressing the Limitation: Using an Electronic Scoring System

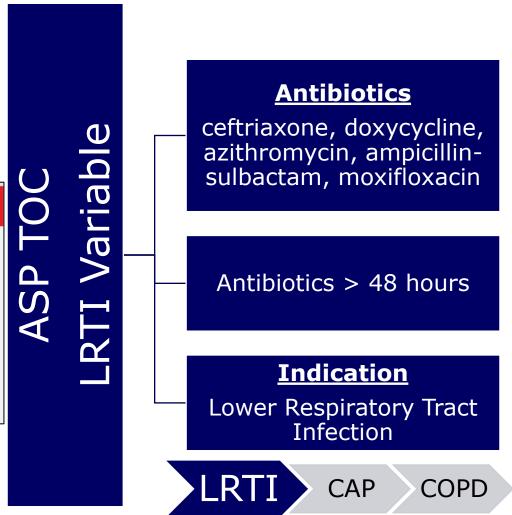
October 2021

Electronic scoring system launches on EHR

Standard of care

Streamlines pharmacy services

Identifies patients that require interventions


September 2022
ASP TOC LRTI variable
launched on EHR

Includes **variables** associated with a tiered point system, based on workload prioritization

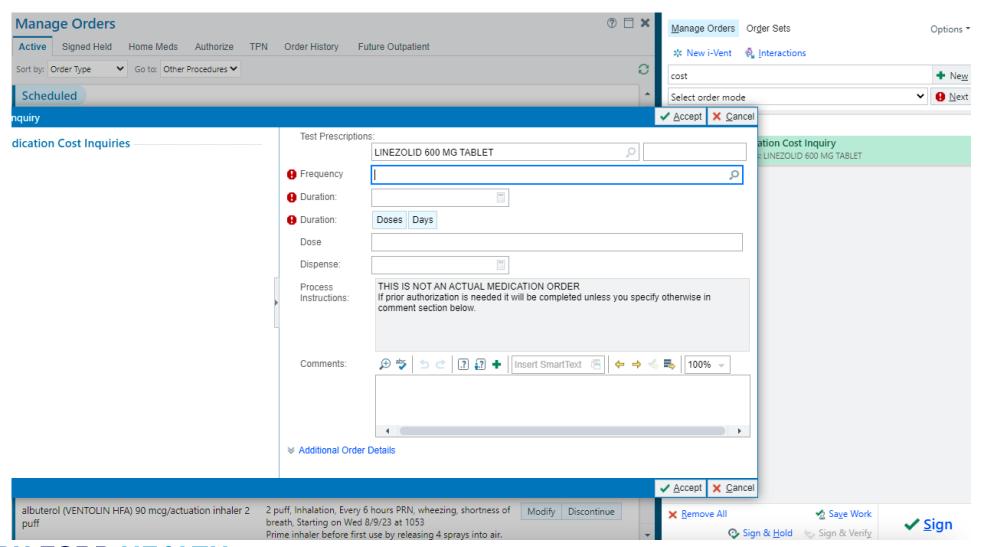
32


Electronic Scoring System: ASP TOC LRTI Variable

HENRY FORD HEALTH

Steps to Use the ASP TOC Variable

Identify patients eligible for ASP TOC interventions



- 1) Finalize discharge antibiotic regimen with primary team
- 2) Write ASP TOC Progress Note
- Write antibiotic discharge prescription order

Results of Using the ASP TOC Variable

Endpoint	Pre-Intervention N = 100	Post-Intervention N = 100	P-value	
Primary Endpoint	Primary Endpoint			
Proportion with optimized discharge regimen (n, %)	69 (69)	82 (82)	0.033	
Secondary Endpoint				
Proportion of ASP TOC interventions completed (n, %)	4 (4)	25 (25)	< 0.001	
Adverse effects	5 (5)	3 (3)	0.0721	
Emergency department visits	29 (29)	21 (21)	0.191	
Readmission	21 (21)	14 (14)	0.193	
Primary care physician clinic visits	1 (1)	2 (2)	0.561	
Length of stay (days, IQR)	3.79 (2.9-4.9)	3.73 (2.7-4.6)	0.839	

Checking Discharge Medication Access Using an Electronic System

Discharge Medication Access Breakdown

DMCI Consult Order Result	Number, n (%)
Covered	849 (60.8)
Prior auth required	174 (12.4)
Not covered	124 (8.9)
No insurance	71 (5.1)
Deductible not met	48 (3.4)
Other*	131 (9.4)

Medication Class	Number, n (%)
Anticoagulant	2245 (55.7)
Respiratory Inhaler	602 (14.9)
Antimicrobial	428 (10.6)
Antidiabetic	220 (5.4)
Antiplatelet	143 (3.6)
Antihypertensive	87 (2.2)
Analgesic	58 (1.4)
Cardiac	47 (1.2)

HENRY FORD HEALTH

Antimicrobial Stewardship Strategies Targeting Transitions of Care

Nisha Patel, Pharm.D., BCPS

Clinical Pharmacist – Internal Medicine

Henry Ford Health - Detroit

November 3, 2023