

Practical Approaches to Outpatient Stewardship

Michael E. Klepser, PharmD, FCCP, FIDP Professor, Ferris State University College of Pharmacy Senior Director, CHARM

Disclosures

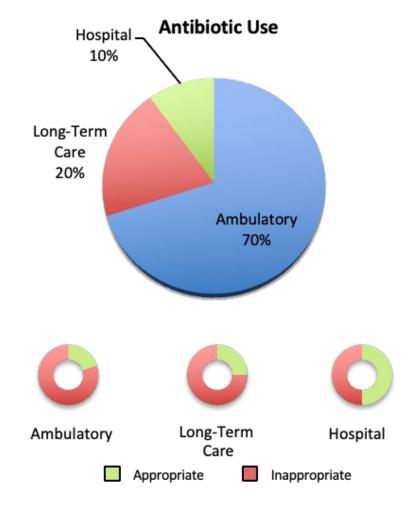
I have the following relationships to disclose:

- Research grants: Beckton Dickinson, Genentech
- Paid consultant: Qorvo, Beckton Dickinson, Primary. Health, Roche Labs, Quidel
- Independent contractor: LabSimply

Objectives

At the end of this program the attendee will be able to:

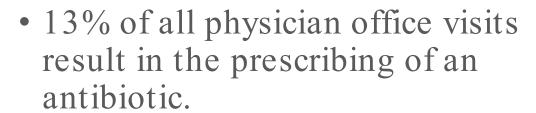
Identify Common Data Sources and Metrics for Outpatient Stewardship.


Implement Data-Driven Antimicrobial Stewardship Strategies in Outpatient Settings.

Understand the Importance of Data in Outpatient Antimicrobial Stewardship.

Outpatient Antibiotic Use

- Of the antibiotics used in humans, 60%-80% of antibiotics are used in the ambulatory care setting.
 - Approximately 30% of antibiotics prescribed in the outpatient setting are unnecessary.
 - Total inappropriate antibiotic use, inclusive of unnecessary use and inappropriate selection, dosing and duration, may approach 50% of all outpatient antibiotic use.



IMPROVE OUTPATIENT ANTIBIOTIC USE

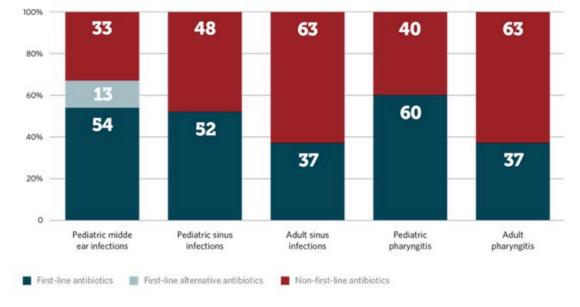
www.cdc.gov/antibiotic-use

- Translates into 154 million antibiotic prescriptions.
- In 2020, there were 613 oral antibiotic prescriptions per 1,000 persons.
- 1 in 3 antibiotics is unnecessary.

Public Health Agency of Sweden and National Veterinary Institute 2018 update Antibiotic Use in the United States

• 30% (47 million) of antibiotic prescriptions are unnecessary.

Fairlie T, et al. Arch Intern Med. 2012;172:1513-4.


Smith SS, et al. Otolaryngol Head Neck Surg. 2013;148:852-9.

Barnett MI, et al. JAMA Intern Med. 2014;174:138-40.

Antibiotic resistance threats in the United States, 2013, Center for Disease Control and Prevention

• For some common conditions, only half of patients receive the recommended first-line antibiotic.

Diagnosis	Visits with Antibiotics Prescribed by Age group (% Appropriate)			
	0-19 years	20-64 years	≥65 years	
Sinusitis	84.7% (90%)	70.9% (49%)	53.8% (84%)	
Pharyngitis	56.2% (67%)	72.4% (24%)		
Viral URI	21.2% (0%)	43.0% (0%)	39.4% (0%)	
Bronchitis/bronchiolitis	55.2% (0%)	72.4% (0%)	60.9% (0%)	

• Among all patients, 50% of the antibiotic prescriptions for respiratory conditions were not warranted. For all conditions, 30% of antibiotic prescriptions were not warranted.

Diagnosis	Antibiotic Use (%)	Percent Non-concordant antibiotic (95% CI)	Percent Non-concordant dosing regimen (95% CI)
UTI	6.7%	55% (54%, 56%)	90% (89%, 91%)
Cellulitis	1.6%	42% (40.3%, 43.6%)	83% (82%, 85%)
Streptococcal pharyngitis	1.5%	25% (23%, 26%)	38% (36%, 40.5%)
Sinusitis	7.3%	76% (75%, 77%)	12.5% (11%, 13.5%)
Overall		61% (60%, 61%)	53% (52%, 53.5%)

• Examined 1,442,704 clinic visits, 239,090 visits resulted in a prescription for an antibiotic.

Inappropriate Antibiotic Use is a Problem

- Overuse of antibiotics is associated with:
 - Emergence of resistance
 - Outpatient antibiotic use affects inpatient antibiotic use.
 - Infection related mortality with antibiotic resistant bacteria will exceed cancer-related mortality by 2050.
 - Increased healthcare costs
 - Cost the US health system more than \$20 billion annually.
 - Increased adverse drug reactions
 - Responsible for one out of every five drug-related emergency department visits for all patients.
 - 56% for children <5 years and 32% for children 6-19 years
- Impacts health care systems at every level.

Outpatient Antibiotic Use Drivers

- Patient expectations
 - May not be a big as previously thought.
- Prescriber lack of familiarity/adherence with treatment guidelines
- Lack of and use of diagnostic tools and microbiology data at the point of care
- Provider shortage
 - Pressure to see more patients

- Poor patient follow-up
 - Dismiss and done
- Free antibiotic programs
 - Remove a barrier to antibiotic access
 - Create a pressure to use agent suboptimal spectra of activity
- Fear
 - Missing something
 - Litigation

The Joint Commission

- Effective January 1, 2020, The Joint Commission requirements (Standard MM.09.01.03) for antimicrobial stewardship in ambulatory care went into effect.
 - EP 1: The organization identifies an individual(s) responsible for developing, implementing, and monitoring activities to promote appropriate antimicrobial medication prescribing practices.
 - EP 2: The organization sets at least one annual antimicrobial stewardship goal.
 - EP 3: The organization uses evidence-based practice guidelines related to its annual antimicrobial stewardship goal(s).

The Joint Commission

Continued

- EP 4: The organization provides all clinical staff and licensed independent practitioners with educational resources related to its antimicrobial stewardship goal(s) and strategies that promote appropriate antimicrobial medication prescribing practices.
- EP 5: The organization collects, analyzes, and reports data pertaining to the antimicrobial stewardship goal(s) to organizational leadership and prescribers.
 - Note: Data may include antimicrobial medication prescribing patterns, antimicrobial resistance patterns, or an evaluation of the antimicrobial stewardship activities implemented

Outpatient Antimicrobial Stewardship

- The Society of Infectious Diseases Pharmacists published 2 papers on outpatient antimicrobial stewardship.
 - Outlines a process for developing a program
 - Identifies key stake holders and members
 - Identifies a means to quantify antibiotic use and assess appropriateness.
 - Outlines various activities and interventions

Steps for Establishing an Outpatient Antimicrobial Stewardship Program

- Identify program scope
- Create Stewardship Team
- Assess baseline practice and antibiotic use
- Develop program priorities
- Develop initiatives
- Develop and monitor progress and outcomes

Identify the Scope of the Program

- Single institution vs. community wide
- Identify stakeholders
- Identify a point person within each organization
- Develop a data dissemination plan among partners

Create an Antimicrobial Stewardship Team

- Identify core and translational members
 - View as an extension of inpatient stewardship activities.
 Leaders from the inpatient team can lead outpatient activities.
 - Identify roles
 - Secure document support for members to engage in antimicrobial stewardship activities

Key Members of an Outpatient Antimicrobial Stewardship Team

Core Members

- Physician
 - Training in ID preferred, but not essential.
- Pharmacist
 - Training in ID preferred, but not essential.

Translational Members

- Clinic leader
- Microbiologist/Laboratorian
 - Track pathogens and susceptibility patterns
 - Develop recommendations for use of POCT
- Public Health
- Information Technology Specialist

Assess Baseline Antibiotic Use, Resistance Patterns, and Outcomes

- Report usage data to the prescriber/patient level
- Compare usage patterns to available metrics
 - Among prescribers and clinics
- Summarize outpatient infection control measures and immunization rates
- Summarize antibiotic complication rates
 - Readmissions, CDI rates, adverse reactions, secondary infections

Methods for Assessing Outpatient Antibiotic Use

Reporting Antibiotic Use

- Milligrams used
- Number of prescriptions
- Defined Daily Doses
 - Assumed average maintenance dose per day for its main indication in adults.

Standardizing Use

- Census population
- Clinic patients
- Clinic visits
- Unit of time

Be aware of methods to make sure you are comparing like data.

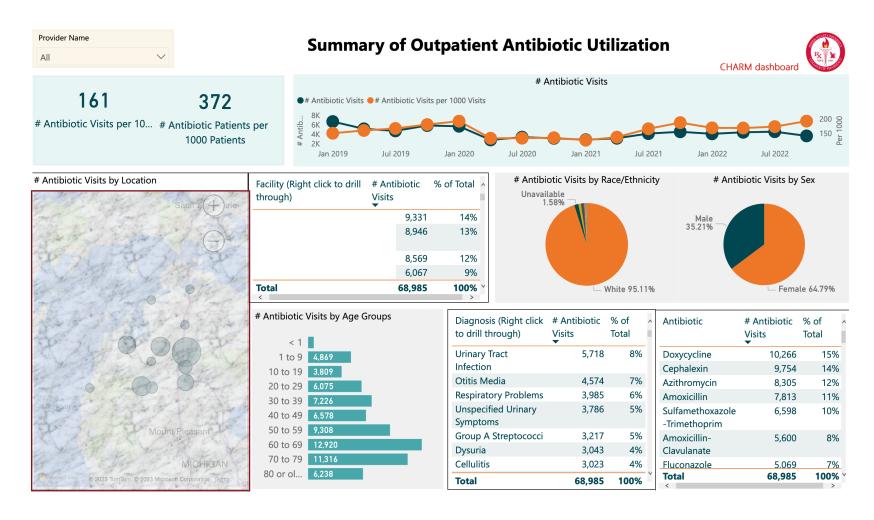
Methods for Assessing Outpatient Antibiotic Use

Data Source	Source Level of Data Streng		ata Source Level of Data		Weaknesses
Practice Surveys (NAMCS, NHAMCS)*	Population	•Good for examining national/regional	•Not useful to direct stewardship		
Claims Data	Population trends	trends	• Costly to acquire		
Purchase Data from pharmacy wholesalers	Population		Time lagCumbersome to analyze		
Electronic Medical Records Data	Patient/Prescriber	 Short time lag Good for examining individual prescribing patterns Patient level data 	•Burden of extraction on the individual site.		
Prescriptions filled	Patient	•Accurate assessment of use	•Difficult to obtain		

Tracking Outpatient Antimicrobial Use: CHARM Process

- Extract data
 - Use clinic EMR data
 - Limited and masked data set
 - Identify episode of antibiotic use
 - Serves as the anchor for the collection of other relevant data
 - Link to a diagnosis (ICD-10 code)

Fields			
Masked Patient ID	Insurance Type		
Facility/Clinic	Provider		
Sex	Provider Type		
Race/Ethnicity	Encounter Type		
Date of Encounter	Antibiotic Allergies		
Age	Renal Function		
Body weight	Indication Code		
Prescription	Indication Name		
Antibiotic Name	Antibiotic Dose		
Antibiotic Unit Antibiotic Quantit			



Tracking Outpatient Antimicrobial Use: CHARM Process

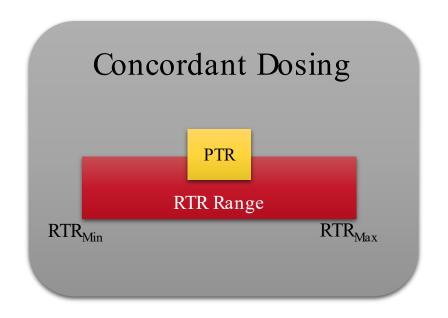
- Summarize and analyze data
 - Quantify antibiotic use
 - Antibiotic prescriptions per 1,000 clinic visits
 - Antibiotic prescriptions per 1,000 clinic patients
 - Determine if the antibiotic selected and indication are in concordance with published guidelines, FDA-approved indications, and/or site-specific treatment pathways for the associated indication.
 - Create diagnoses buckets

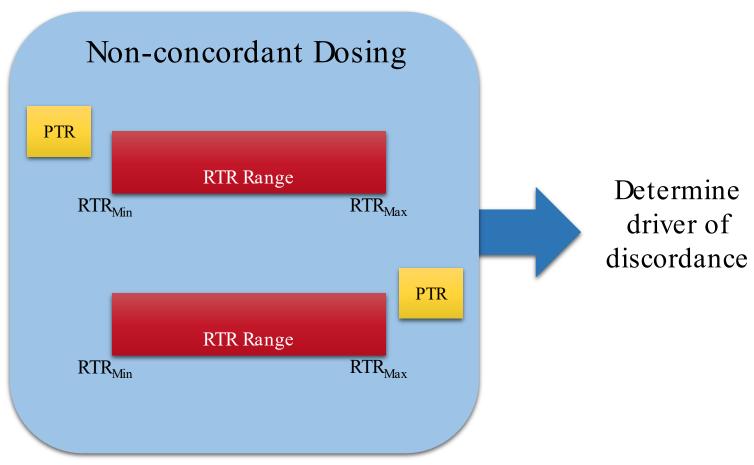
Tracking Outpatient Antimicrobial Use

Tracking Outpatient Antimicrobial Use: CHARM Process

- Summarize and analyze data
 - For agents that are concordant with respect to indication, determine dosing concordance

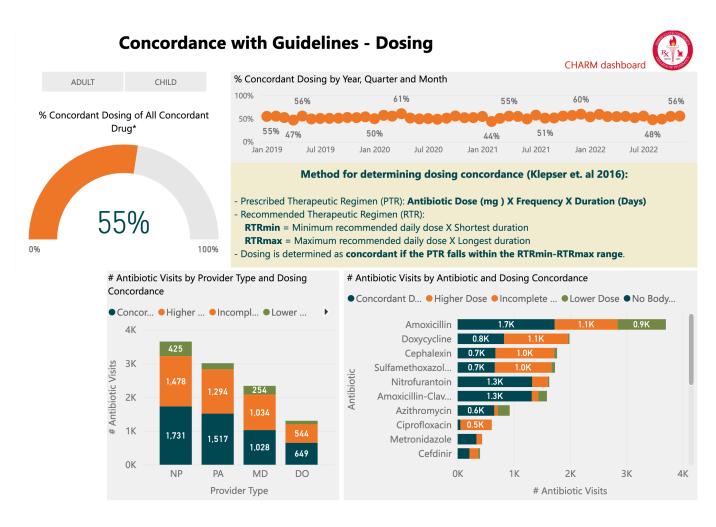
Prescribed Therapeutic Regimen (PTR)

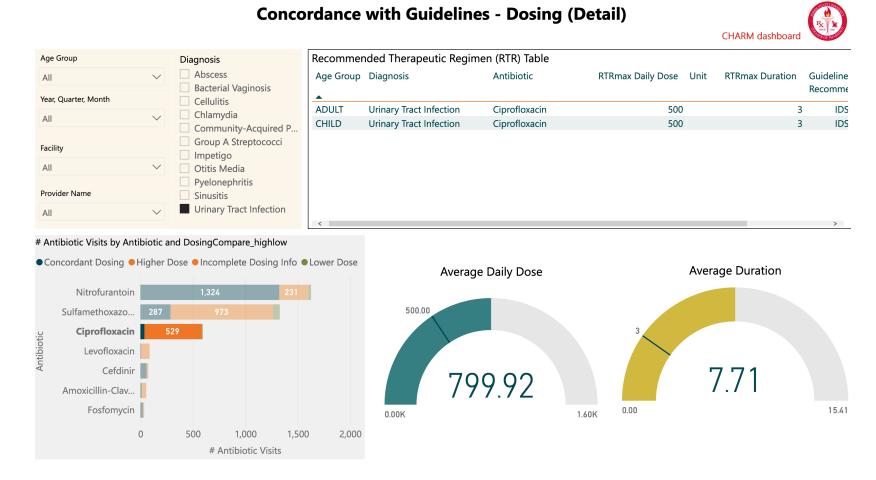

 $PTR = (Dose_{Prescribed} x Duration_{Prescribed} x Frequency_{Prescribed})$


Recommended Therapeutic Regimen (RTR_{Min/Max})

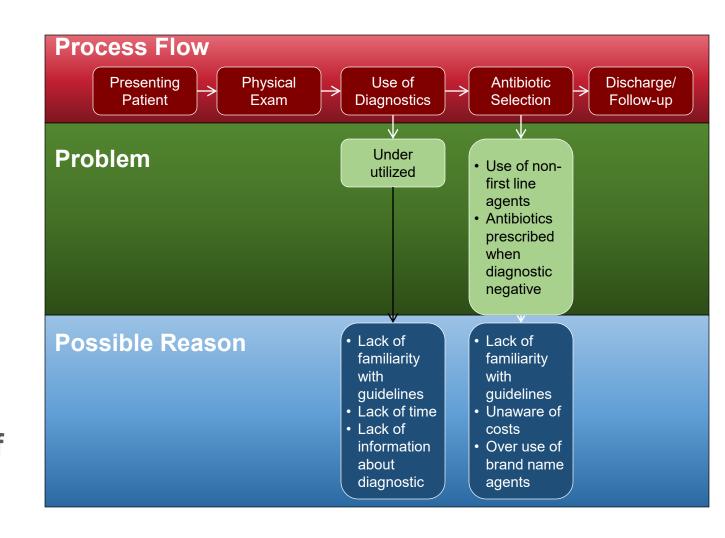
 $RTR = (Dose_{Recommended} x Duration_{Recommended} x Frequency_{Recommended})$

CHARM Process




Tracking Outpatient Antimicrobial Use

• For common outpatient diagnoses, a discordant antibiotic and/or dosing regimen were prescribed more 70% of the time.

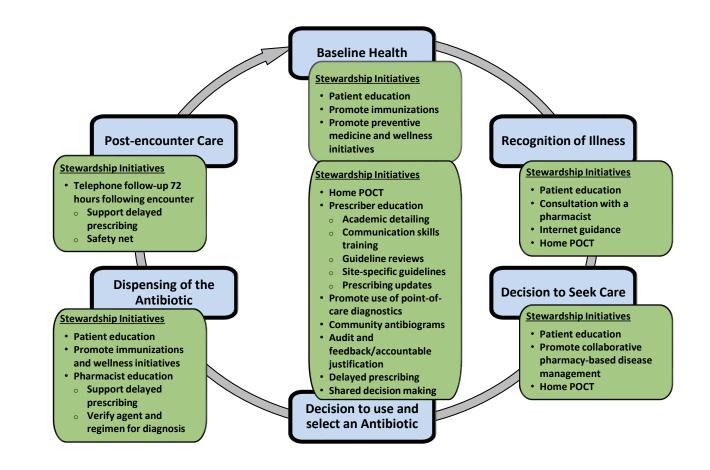

Tracking Outpatient Antimicrobial Use

Develop Program Priorities

- Identify areas of concern
- Create a process map of elements that contribute to the problem
- List primary and secondary desired outcomes for each area of concern
 - Antibiotic prescription rates, cost, resistance rates, rates of hospitalization

Develop Initiatives to Address Problems

- List interventions that would likely improve outcome
- For each intervention, develop a process or workflow describing the intervention and individuals involved
- Establish a timeline for implementation and assessment of outcomes
 - This is essential to make sure everyone has the same expectations
- Seek approvals if necessary


Develop Procedure to Monitor Progress and Outcomes

- Assess the impact of each intervention of desired outcomes
- Track continued feasibility of each intervention
- Determine if interventions and outcomes yielded the desired impact on the area of concern
- Refine initiatives as needed

Outpatient Infection Journey

- Goal is to keep people at their baseline health.
 - This should be a primary outpatient stewardship activity.

Low Hanging Outpatient Antimicrobial Stewardship Fruit

- Tracking and reporting
- Linking antibiotic use to a diagnosis
- Updating patient allergy information
- Promoting immunization initiatives
- Monitoring antibiotics during transitions of care

Actionable Data is the Key

- Timely, granular data is needed:
 - To assesses and track performance
 - Identify potential areas for the development of initiatives
 - To track the impact of initiatives
 - To present to prescribers for education
 - To justify outpatient stewardship activities
 - For benchmarking
- Without good data you are just wasting resources and effort.

State Bench Marking

Demographics

Antibiotic Summary

Medication Details

Diagnosis Details

Drug Choice

Dosing Evaluation

Category Details

Benchmarking

Gender

female

Male

Age Group Adult Child

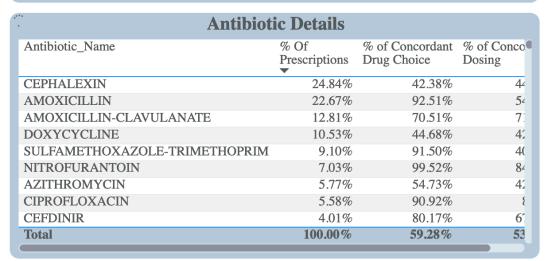
Ethnicity		
A11	~	

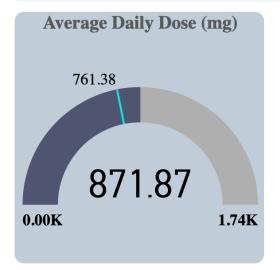
% Of Concordant Dosing out of **Concordance Drug Choice** 47.65%

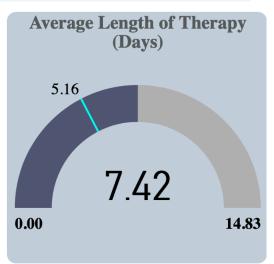
% Concordant Drug Choice

43.26%

Antibiotic Prescriptions to 1000 Prescriptions


Antibiotic Prescriptions of 1000 Patients

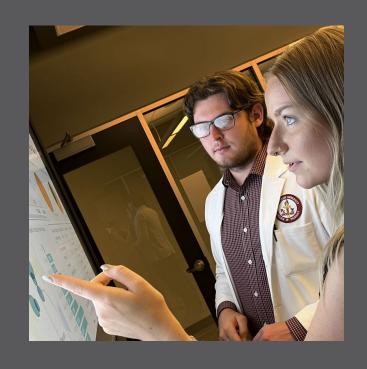

69.73%


Diagnosis Details =					
Diagnosis	% Of Prescriptions	% of Concordant Drug Choice	% of Concor Dosing		
URINARY TRACT INFECTION	35.36%	43.26%	47.0		
OTITIS MEDIA	19.62%	75.41%	70.9		
GROUP A STREPTOCOCCI	14.80%	76.26%	40.0		
CELLULITIS	14.34%	59.51%	40.:		
COMMUNITY-ACQUIRED PNEUMONIA	5.04%	70.93%	50.4		
ABSCESS	4.85%	62.18%	72.0		
SINUSITIS	3.00%	50.10%	70.:		
IMPETIGO	1.11%	57.51%	43.1		
Total	100.00%	59.28%	53.6		

Diagnosis Details =					
Diagnosis	% Of Prescriptions	% of Concordant Drug Choice	% of Concor Dosing		
URINARY TRACT INFECTION	35.36%	43.26%	47.0		
OTITIS MEDIA	19.62%	75.41%	70.9		
GROUP A STREPTOCOCCI	14.80%	76.26%	40.0		
CELLULITIS	14.34%	59.51%	40.		
COMMUNITY-ACQUIRED PNEUMONIA	5.04%	70.93%	50.4		
ABSCESS	4.85%	62.18%	72.0		
SINUSITIS	3.00%	50.10%	70.		
IMPETIGO	1.11%	57.51%	43.1		
Total	100.00%	59.28%	53.6		

	% of C	oncordancy	by Year, Qua	arter and Month
	0 % (of Concordant Dos	ing % of Concor	dant Drug Choice
1009	% · · · · · · · · · · · · · · · · · · ·		:	:
50% of Concordancy	62.69%	64.72% 56.14%	57.77% 47.2	43.11%
95 8 09		31.9370	33.92%	46.90% 49.06% 38.78%
0 07	2019	2020	2021	2022

Outpatient Antimicrobial Stewardship Metrics


System-Level

- Prescribing data
 - Normalized
- Rates of concordance
- Rate of identification of a diagnosis for prescriptions
- Benchmarking among clinics and with other health systems
- Rates of immunizations

Prescriber-Level

- Granular prescribing data
- Rates of concordance for target diagnoses
- Benchmarking among peers
- Rates of immunizations

Collaboration to Harmonize Antimicrobial Registry Measures (CHARM) Michael E. Klepser, PharmD, FCCP, FIDP
Professor
Ferris State University College of Pharmacy

Senior Director, Collaboration to Harmonize Antimicrobial Registry Measures (CHARM) 25 Michigan Ave, Suite 7000 Grand Rapids, MI 49503

Email: michaelklepser@ferris.edu
Webpage: https://www.ferris.edu/charm.htm

